All-silicon multidimensionally-encoded optical physical unclonable functions for integrated circuit anti-counterfeiting
All-silicon multidimensionally-encoded optical physical unclonable functions for integrated circuit anti-counterfeiting
Blog Article
Abstract Integrated circuit anti-counterfeiting based on optical physical unclonable functions (PUFs) plays a crucial role in guaranteeing secure identification and authentication for Internet of Things (IoT) devices.While considerable efforts have been devoted to exploring optical PUFs, two critical challenges remain: incompatibility with the complementary metal-oxide-semiconductor (CMOS) technology and limited information entropy.Here, we demonstrate read more all-silicon multidimensionally-encoded optical PUFs fabricated by integrating silicon (Si) metasurface and erbium-doped Si quantum dots (Er-Si QDs) with a CMOS-compatible procedure.Five in-situ optical responses have been manifested within a single pixel, rendering an ultrahigh information entropy of 2.
32 bits/pixel.The position-dependent optical responses originate from the position-dependent radiation field and Purcell effect.Our evaluation highlights their potential in IoT security through advanced metrics like bit uniformity, similarity, intra- read more and inter-Hamming distance, false-acceptance and rejection rates, and encoding capacity.We finally demonstrate the implementation of efficient lightweight mutual authentication protocols for IoT applications by using the all-Si multidimensionally-encoded optical PUFs.